High Order Explicit Two-Step Runge-Kutta Methods for Parallel Computers

نویسندگان

  • H. Podhaisky
  • R. Weiner
  • J. Wensch
چکیده

R n , parameters A aij R s , c b R , 1l : 1 1 T and step size hm. F denotes the straightforward extension of f to R . Here, denotes the Kronecker tensor product. Notice that the EPTRK method 2 requires only one sequential function evaluation per step on a parallel computer with s processing elements. Numerical experiments with a variable step size implementation on a shared memory computer have shown that EPTRK methods perform well for non stiff 3 and formildly stiff 10 problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Explicit Two - Step Runge - KuttaMethods with Enlarged Stability Regions

In this paper we study a class of explicit pseudo two-step Runge-Kutta (EP-TRK) methods for rst-order ODEs for parallel computers. We investigate linear stability and derive methods with enlarged stability regions. In numerical experiments on a shared memory computer we compare a parallel variable step size EPTRK implementation with the eecient sequential Runge-Kutta method dopri5.

متن کامل

A general class of explicit pseudo two - stepRKN methods on parallel computers

The aim of this paper is to investigate a general class of explicit pseudo two-step Runge-Kutta-Nystrr om methods (RKN methods) of arbitrarily high order for nonstii problems for systems of special second-order diierential equations y 00 (t) = f(y(t)). Order and stability considerations show that we can obtain for any given p, a stable pth-order explicit pseudo two-step RKN method requiring p ?...

متن کامل

High Order Explicit Two - Step Runge - Kutta

In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...

متن کامل

A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel

Citation A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and defer...

متن کامل

Embedded Diagonally Implicit Runge - Kutta Algorithms on Parallel Computers

This paper investigates diagonally implicit Runge-Kutta methods in which the implicit relations can be solved in parallel and are singly diagonalimplicit on each processor. The algorithms are based on diagonally implicit iteration of fully implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such a way that the resulting algorithm is ^(a)-stable or Z,(a)-stable with a e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004